Automated Self-Supervised Learning for Recommendation

Lianghao Xia
The University of Hong Kong
aka xia@foxmail.com

Kangyi Lin Tencent plancklin@tencent.com Chao Huang*
The University of Hong Kong
chaohuang75@gmail.com

Tao Yu The University of Hong Kong tyu@cs.hku.hk Chunzhen Huang
Tencent
chunzhuang@tencent.com

Ben Kao The University of Hong Kong kao@cs.hku.hk

https://github.com/HKUDS/AutoCF

(WWW-2022)

Reported by Ke Gan

- 1. Introduction
- 2. Approach
- 3. Experiments

Introduction

rely on manually generated contrastive views for heuristicbased data augmentation

- i) losing important structural information
- ii) keeping the noisy data

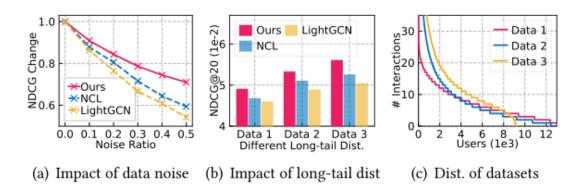
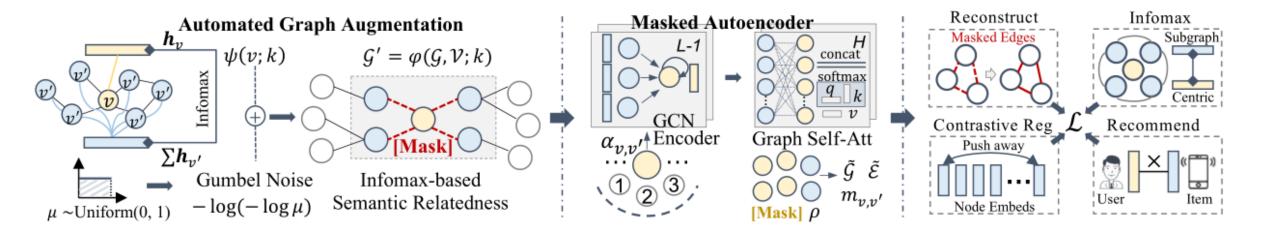
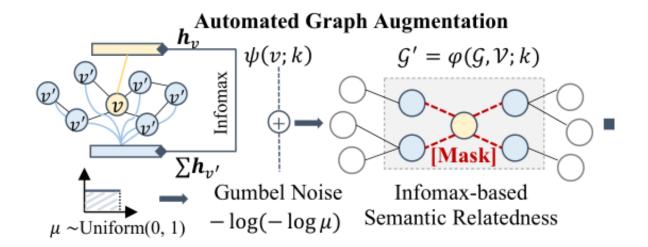
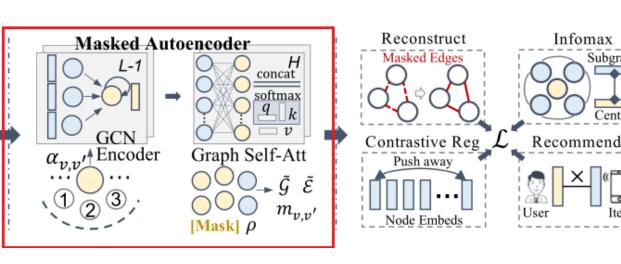




Figure 1: The influence of data noise and long-tail distributions on the prediction accuracy of different methods.

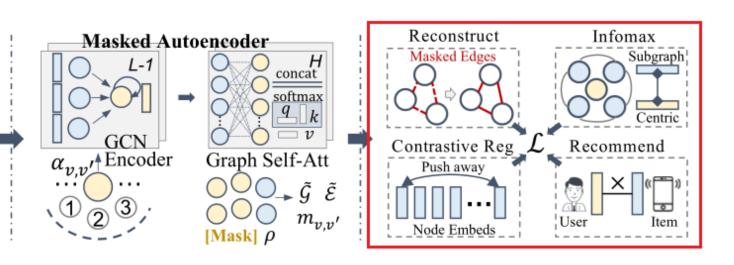


$$\varphi(\mathcal{G}, \mathcal{V}; k) = \left\{ \mathcal{U}, \mathcal{I}, \mathcal{V}, \mathcal{E} \setminus \{ (v_1, v_2) | v_1, v_2 \in \mathcal{N}_v^k, v \in \mathcal{V} \} \right\}$$
(3)

$$s_v = \psi(v; k) = \operatorname{sigm}(\mathbf{h}_v^{\top} \sum_{v' \in \mathcal{N}_v^k} \mathbf{h}_{v'} / (|\mathcal{N}_v^k| \cdot ||\mathbf{h}_v|| \cdot ||\mathbf{h}_{v'}||))$$
(4)

$$\psi'(v;k) = \log \psi(v;k) - \log(-\log(\mu)); \quad \mu \sim \text{Uniform}(0,1) \quad (5)$$

$$\mathcal{L}_{\text{InfoM}} = -\sum_{v \in \mathcal{U} \cup I} \psi(v; k).$$


$$\mathbf{h}_{v}^{l+1} = \alpha_{v,v} \cdot \mathbf{h}_{v}^{l} + \sum_{v' \in \mathcal{N}_{v}'} \alpha_{v,v'} \cdot \mathbf{h}_{v'}^{l}; \qquad \alpha_{v,v'} = 1/\sqrt{|\mathcal{N}_{v}'||\mathcal{N}_{v'}'|}$$
(6)

$$\tilde{\mathcal{G}} = \{ \mathcal{U}, \mathcal{V}, \tilde{\mathcal{E}} = \bar{\mathcal{E}} \cup \mathcal{E}' \}; \quad \bar{\mathcal{E}} = \{ (v_1, v_2) | v_1, v_2 \in \bar{\mathcal{V}} \cup \tilde{\mathcal{V}} \}$$
s.t. $|\bar{\mathcal{E}}| = |\mathcal{E}'|, |\bar{\mathcal{V}} \cup \tilde{\mathcal{V}}| = \rho \cdot (|\mathcal{U}| + |I|)$ (7)

$$\mathbf{h}_{v}^{l+1} = \sum_{v'} \prod_{h=1}^{H} m_{v,v'} \beta_{v,v'}^{h} \mathbf{W}_{V}^{h} \mathbf{h}_{v'}^{l}; \quad m_{v,v'} = \begin{cases} 1 & \text{if } (v,v') \in \tilde{\mathcal{E}} \\ 0 & \text{otherwise} \end{cases}$$

$$\beta_{v,v'}^{h} = \frac{\exp \bar{\beta}_{v,v'}^{h}}{\sum_{v'} \exp \bar{\beta}_{v,v'}^{h}}; \qquad \bar{\beta}_{v,v'}^{h} = \frac{(\mathbf{W}_{Q}^{h} \cdot \mathbf{h}_{v}^{l})^{\top} \cdot (\mathbf{W}_{K}^{h} \cdot \mathbf{h}_{v'}^{l})}{\sqrt{d/H}}$$
(8)

$$\mathcal{L}_{\text{recon}} = -\sum_{(v,v')\in\mathcal{E}\setminus\mathcal{E}'} \hat{\mathbf{h}}_v^{\top} \cdot \hat{\mathbf{h}}_{v'}; \quad \hat{\mathbf{h}}_v = \sum_{l=0}^{L} \mathbf{h}_v^{l}$$
(9)

$$\mathcal{L}_{ssl} = \sum_{u \in \mathcal{U}} \log \sum_{i \in \mathcal{I}} \exp \hat{\mathbf{h}}_{u}^{\top} \hat{\mathbf{h}}_{i} + \sum_{u \in \mathcal{U}} \log \sum_{u' \in \mathcal{U}} \exp \hat{\mathbf{h}}_{u}^{\top} \hat{\mathbf{h}}_{u'}$$
$$+ \sum_{i \in \mathcal{I}} \log \sum_{i' \in \mathcal{I}} \exp \hat{\mathbf{h}}_{i}^{\top} \hat{\mathbf{h}}_{i'} + \mathcal{L}_{InfoM} + \mathcal{L}_{recon}$$
(10)

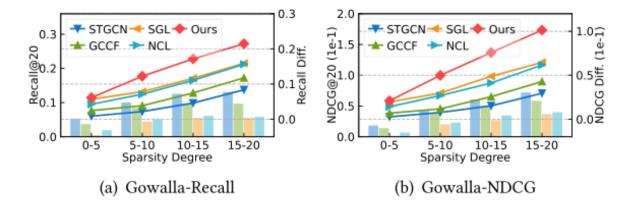

$$\mathcal{L} = -\sum_{(u,i)\in\mathcal{E}} \hat{\mathbf{h}}_{u}^{\top} \cdot \hat{\mathbf{h}}_{i} + \lambda_{1} \cdot \mathcal{L}_{ssl} + \lambda_{2} \cdot \|\mathbf{\Theta}\|_{F}^{2}$$
(11)

Table 2: Performance comparison on Gowalla, Yelp, and Amazon datasets in terms of Recall and NDCG.

Data	Metric	BiasMF	NCF	AutoR	PinSage	STGCN	GCMC	NGCF	GCCF	LightGCN	DGCF	SLRec	NCL	SGL	HCCF	AutoCF	p-val.
Gowalla	Recall@20	0.0867	0.1019	0.1477	0.1235	0.1574	0.1863	0.1757	0.2012	0.2230	0.2055	0.2001	0.2283	0.2332	0.2293	0.2538	$1.3e^{-10}$
	NDCG@20	0.0579	0.0674	0.0690	0.0809	0.1042	0.1151	0.1135	0.1282	0.1433	0.1312	0.1298	0.1478	0.1509	0.1482	0.1645	$4.9e^{-12}$
	Recall@40	0.1269	0.1563	0.2511	0.1882	0.2318	0.2627	0.2586	0.2903	0.3181	0.2929	0.2863	0.3232	0.3251	0.3258	0.3441	$9.3e^{-10}$
	NDCG@40	0.0695	0.0833	0.0985	0.0994	0.1252	0.1390	0.1367	0.1532	0.1670	0.1555	0.1540	0.1745	0.1780	0.1751	0.1898	$1.0e^{-9}$
Yelp	Recall@20	0.0198	0.0304	0.0491	0.0510	0.0562	0.0584	0.0681	0.0742	0.0761	0.0700	0.0665	0.0806	0.0803	0.0789	0.0869	$6.2e^{-7}$
	NDCG@20	0.0094	0.0143	0.0222	0.0245	0.0282	0.0280	0.0336	0.0365	0.0373	0.0347	0.0327	0.0402	0.0398	0.0391	0.0437	$1.0e^{-6}$
	Recall@40	0.0307	0.0487	0.0692	0.0743	0.0856	0.0891	0.1019	0.1151	0.1175	0.1072	0.1032	0.1230	0.1226	0.1210	0.1273	$1.2e^{-4}$
	NDCG@40	0.0120	0.0187	0.0268	0.0315	0.0355	0.0360	0.0419	0.0466	0.0474	0.0437	0.0418	0.0505	0.0502	0.0492	0.0533	$1.1e^{-5}$
Amazon	Recall@20	0.0324	0.0367	0.0525	0.0486	0.0583	0.0837	0.0551	0.0772	0.0868	0.0617	0.0742	0.0955	0.0874	0.0885	0.1277	$5.1e^{-13}$
	NDCG@20	0.0211	0.0234	0.0318	0.0317	0.0377	0.0579	0.0353	0.0501	0.0571	0.0372	0.0480	0.0623	0.5690	0.0578	0.0879	$8.0e^{-13}$
	Recall@40	0.0578	0.0600	0.0826	0.0773	0.0908	0.1196	0.0876	0.1175	0.1285	0.0912	0.1123	0.1409	0.1312	0.1335	0.1782	$7.3e^{-13}$
	NDCG@40	0.0293	0.0306	0.0415	0.0402	0.0478	0.0692	0.0454	0.0625	0.0697	0.0468	0.0598	0.0764	0.0704	0.0716	0.1048	$1.5e^{-13}$

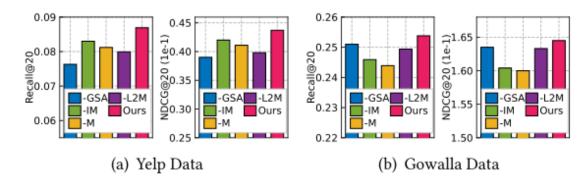


Figure 4: Module ablation study on Yelp and Gowalla.

-GSA. In this variant, a symmetry encoder-decoder

M (without the \mathcal{L}_{InfoM} and \mathcal{L}_{recon} regularization)

-IM removes the infomax-based loss \mathcal{L}_{InfoM}

masking strategy $\psi'(v;k)$ is replaced with the randomly edge masking in the variant **-L2M**.

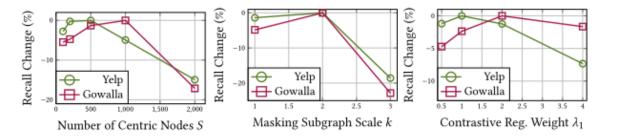


Figure 5: Hyperparameter study for the proposed AutoCF in terms of Recall@20 changes on Yelp and Gowalla datasets.

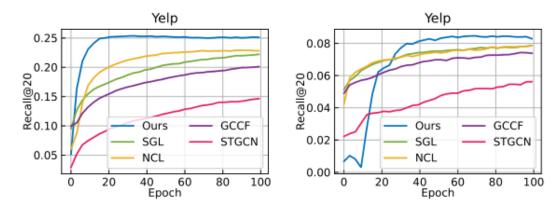


Figure 6: Convergence analysis w.r.t epochs while training.

Table 3: Model efficiency study in terms of per-epoch training time (seconds) on Gowalla, Yelp, and Amazon datasets.

Model	DGCF	NCL	HCCF	SGL	Ours
Gowalla	12.03s	5.38s	6.00s	8.07s	7.09s
Yelp	11.47s	3.33s	4.07s	4.88s	4.06s
Amazon	85.54s	25.62s	48.28s	49.87s	59.81s

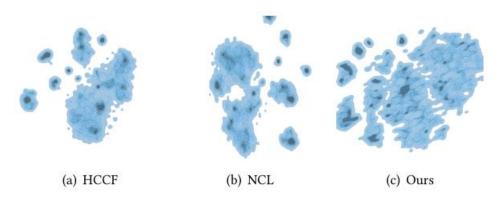


Figure 8: User embedding distribution of different methods with Gaussian kernel density estimation (KDE) on Yelp data.

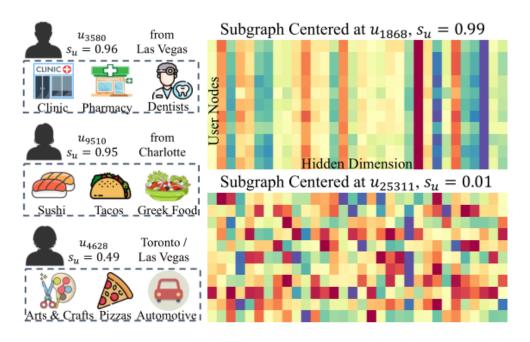


Figure 7: Case study for i) model interpretation in learning semantic relatednes of user interactions; ii) heatmaps of encoded user embeddings from two user-centric subgraphs.

Thank you!